Notes on Constructing Qucs Verilog-A Compact
Device Models and Circuit Macromodels

Mike Brinson and Stefan Jahn

Abstract—The Qucs project regularly receives requests from
users of the circuit simulation package for more information on
how to add Verilog-A compact device models and circuit macro-
modelling to Qucs. The notes presented in this paper outline
the steps that model developers must follow when adding new
Verilog-A models to either Qucs-0.0.16 (the current production
version of the package) or Qucs 0.0.17 (the current development
version of the package). At the present time Qucs is developed
using the Linux operating system, the GNU-Linux autotools and
the freely available ADMS Verilog-A model synthesizer/compiler.
Hence, these notes apply only to the Linux operating system
version of Qucs. Qucs users who are interested in constructing
their own experimental Verilog-A models are advised to switch
to the Linux operating system if they are not already using it.

Index Terms—Qucs, equation-defined devices, compact device
models, Verilog-A, macromodels and subcircuits.

I. INTRODUCTION

ERILOG-A compact device model construction using the

ADMS Verilog-A synthesizer/compiler [1] was added to
the Qucs simulator to allow compact semiconductor device
model, and integrated circuit macromodel development, via
an internationally standardized hardware description language.
In recent years Verilog-A has been adopted by the modelling
community as the language of choice for new model construc-
tion, primarily because of its extensive modelling capabilities
and ease of use. These notes make no attempt to teach the
fundamentals of the Verilog-A language or its use for device
modelling or circuit macromodelling. Readers who are not
familiar with Verilog-A should consult the books by Patrick
and Miller [2] and Kundert and Zinke [3]. Details of the latest
version of the Verilog-A language can also be found in the
Verilog-A language reference manual [4]. Qucs first used the
ADMS Verilog-A compiler in October 2006. At that time a
series of complex changes had to be made manually to the
Qucs C++ code in order to add schematic capture symbol C++
code to the simulator and to merge model C++ code generated
by the ADMS Verilog-A compiler with the Qucs core code.
Instructions for this process were described in the following
publications: Stefan Jahn and Héléne Parruitte [S] and Mike
Brinson and Stefan Jahn [6]. Although the initial procedure
for adding Verilog-A models to Qucs was perfectly viable it
was more suited to Qucs developers or Qucs users who had a
good knowledge of the software techniques employed in Qucs
development. Indeed a number of Qucs users mastered the
process and used the ADMS/Qucs combination as a powerful

Mike Brinson is a Professor at the Centre for Communications Technology,
London Metropolitan University, London UK. He is also a member of the
Qucs Development Team.

Stafan Jahn is the Manager of the Qucs project. He is based in Munich,
Germany.

model development system, see for example reference [7]. One
of the changes introduced in Qucs version 0.0.16 has been a
procedure which allows significant simplification in the Qucs
Verilog-A model development route. The modified develop-
ment route still requires users to make a number of manual
changes to the core Qucs C++ code. However, such changes
have been minimized and combined with a set of convenient
automated tools which allow easy entry of Verilog-A code via
a colour highlighted editor and automatic generation of model
schematic capture symbols plus their C++ code. The overall
process still employs static C++ libraries which requires that
the entire Qucs C++ code be recompiled after a new model
is merged with the core Qucs code. In the long term it is
proposed that Qucs will move to the use of dynamic C++
code, allowing a simpler compiling and linking procedure to be
adopted in future Qucs releases. However, it is estimated that
this will require a significant amount of work on the existing
Qucs SVN code and could only be done if development time
can be found for the generation of a more “turn-key”” approach
to Qucs Verilog-A model development'. These notes outline
the process for adding new Verilog-A models to the Linux ver-
sions of Qucs. The complete process, from entering Verilog-
A text to model testing, is introduced via the construction
of a non-linear resistance model. As a starting point it is
assumed that readers have downloaded the current Qucs and
ADMS SVN code from http://qucs.sourceforge.net/ (Qucs) and
http://www.noovela.com:8001/svn/adms/trunk/ (ADMS) then
compiled the Qucs/ADMS packages successfully.

II. Qucs EQUATION-DEFINED DEVICE AND VERILOG-A
MODEL CONSTRUCTION

Over the last few years Qucs has evolved from simply
another circuit simulator to a software package which offers
users a range of powerful modelling facilities for the devel-
opment of new compact semiconductor device models and
integrated circuit macromodels. The simulator includes a very
stable equation-defined device model (EDD) and an equivalent
radio frequency version of EDD. These components allow
interactive development of new non-linear Qucs component
models. However, readers should be aware that these models
are of an interpretive form and do not, in most instances,
simulate at the same speed as native C++ models. Their

IThe investment of a large amount of Qucs “Developers” time to make
the change C++ static code to dynamic code would only be worth while if
significant numbers of Qucs users planned to use the proposed “turn-key”
Verilog-A model development route. At this time the availability of stable
non-linear EDD and REDD components, within the Qucs modelling facilities,
and the latest simplified Verilog-A development route is considered to be
more than adequate to meet the requirements of the majority of Qucs model
designers.

great advantage is the fact that they allow fast and easy
construction of new models where changes can be simply
made prior to testing. On the other hand Verilog-A models
are normally compiled to C++ code. The compiled code, when
linked to the body of the Qucs simulator, allows faster model
operation which often approaches the speed obtained by hand-
crafted C++ device models. The main downside factors to
Verilog-A model development are as follows: model devel-
opers require; (1) a good working knowledge of the Verilog-
A hardware description language, (2) a good understanding
of the Qucs C++ simulator code and (3) substantial time
to complete the development phase involving the merger of
the schematic capture C++ code and the ADMS generated
C++ code to the main body of the Qucs code. In general
the development of Verilog-A models is normally restricted
to components where the investment of model development
time is justified, for example complex semiconductor models
for MOSFET devices, advanced circuit macromodels such as
switched capacitor mixed-mode designs or complex models
which require large amounts of computation each time the
model is accessed during simulation. Moreover, it is also
advisable to initially test the design of a new model using
Qucs EDD based models as a prerequisite to investing time on
Verilog-A model development. A series of examples outlining
extended semiconductor diode model construction based on a
Qucs EDD and a Verilog-A template technique can be found
in a recent publication by Brinson, Jahn and Nabijou [8].

III. BUILDING A QucS EDD MODEL FOR A VOLTAGE
CONTROLLED NON-LINEAR RESISTOR

Fig. 1 shows a Qucs EDD model for a simple non-linear
resistor with a resistance value that is a quadratic function
of the device branch voltage. Two coefficients A and B
determine the shape of the non-linear resistive function. In
Fig. 1 these coefficients, with the nominal value of the device
resistance R0, are passed as subcircuit parameters to the EDD
component. Fig. 2 illustrates a resistive voltage divider test
circuit consisting of the non-linear resistor in series with a
standard 1k Ohm resistor. Fig. 2 also gives a number of plots
of the circuit properties as a function of applied input DC
voltage Vsw.

IV. CONSTRUCTION OF A QUCS VERILOG-A MODEL FOR
A VOLTAGE CONTROLLED NON-LINEAR RESISTOR: PART
1; ENTERING VERILOG-A CODE AND GENERATION OF A
SCHEMATIC SYMBOL

Qucs version 0.0.16 includes a text editor which selectively
colour highlights different Verilog-A statements, numbers and
comments, making entry and checking of compact model code
particularly easy. Illustrated in Fig. 3 is the Verilog-A code
for the nonlinear resistor introduced in the last section of
this paper. Once the Verilog-A code for a Qucs model is
entered and checked, pressing key “F9* on the keyboard will
automatically generate a Qucs schematic symbol for the new
model. Initially, this is in a simple block form which can be
edited using the Qucs “Painting* tools to give any desired
schematic symbol outline. Fig. 4 presents both the original

Pin ¢

D1
Dj 11=V1/(RO*(1.0+A*V1+B*V1*V1))

G— R=RO:(1.0+A - Vg + B Vg - V)

RnonLin1
R0=1000.0
alpha=0.1
beta=0.01
Fig. 1. A Qucs non-linear resistance EDD model plus its schematic symbol
Vout
R=R0O-(1.0+A-Vg +B-Vg -V
! (R R VR) R
Vi — R R=1000.0
U=Vsw 1 RnonLinl
R0=1000.0 —
= alpha=0.1
beta=0.05
e simuiaion|
51
=3
>
o | | | Parameter
20 40 60 80 100 sweep
Vsw (V)
0.002 Sw1
Sim=DC1
0.00151, Type=lin
- Param=Vsw
S jesd Start=0
& Stop=100
5e-4 Points=4001
° 20 40 60 80 100
Vsw (V)
1e6 Equation
Eqnl
7 lest R=(Vsw-Vout.V)/IR.I
s
& led
1e3 t t t +
20 40 60 80 100
Vsw (V)
Fig. 2. A non-linear resistance test voltage divider test circuit and a set of

typical simulation graphs for the circuit properties

block symbol and a basic edited symbol, including the non-
linear resistance equation. Saving the model symbol causes
Qucs to automatically generate the C++ code for the new
symbol. In the case of the RnonLin model this is held in file
RnonLin.dat 2. This code, shown in Fig. 5, is needed at a
later stage of the Verilog-A model development process.

’Note that file RnonLin.dat is stored in the development project di-
rectory with all the other files associated with the current project. Project
QucsEDDVerilogA_prj (a sub-directory under directory .qucs) in the
non-linear resistor example.

!.': Applications Places System »

-~

Qucs 0.0.16 - Project: QucsEDDVerilogA
File Edit

1=2=B3Q2

Positioning Insert Project Tools

Simulation View Help

= RnonLin.va ‘
| Content of 'QucsE]]| Note ‘ 5

8
i = Schematics
E Test_Rnon...
RnonLinb.s...
E RnonLin.sch 2-port
= EDDVerilog...
g EDDVerilog... 2-port
VHDL "include "disciplines.vams"
& @ Verilog-A ‘include "constants.vams"
g
a Verilog module RnonLin{Pin, Pout);
5 Octave inout Pin, Pout;
2 electrical Pin, Pout;
Data Displays ‘define attr (txt)
Datasets parameter real RO = 1000.0 from [le-20 : inf]
Others ‘attr(info = "Nominal resistance with A and B = 0" unit="ohm");
parameter real 2 = 0.1 from [-inf : inf]
‘attr(info = "Linear resistance coefficient" unit = "Ohm/V");
parameter real B = 0.05 from [-inf : inf]
‘attr({info = "Quadratic reslj.stance coefficient” unit = "Ohm/(V*2)");
analog begin
I{Pin, Pout) <+ V(Pin, Pout)/(R0*{(1.0+A*V(Pin, Pout)+B*V(Pin, Pout)*V(Pin, Pout)));
end
endmodule
Fig. 3. Verilog-A code for the example non-linear resistor

o fe (@

G R=Rg (1+A*VR +B*Vy*Vy) FO

(b)

RNL1

Fig. 4. Qucs schematic symbols for the example non-linear resistance: (a)
original block symbol and (b) final edited symbol

V. CONSTRUCTION OF A QUCS VERILOG-A MODEL FOR A
VOLTAGE CONTROLLED NON-LINEAR RESISTOR: PART 2;
COMPILING THE VERILOG-A MODEL CODE

The next step in the construction of a Verilog-A model
for the non-linear resistor example involves compiling the
Verilog-A code with the ADMS Verilog-A compiler to gen-
erate a C++ code representation of the original Verilog-A
code. First copy file RnonlLin.va from project directory
QucsEDDVerilogA_prj to Qucs Verilog-A source code
directory /tmp/qucs-core/src/components/verilog.> From a
terminal window change your working directory to the Qucs
Verilog-A directory and compile file RnonLin.va with the
command:

admsXml RnonLin.va -e qucsVersion.xml -e qucsMODULEcore.xml

3This directory reference assumes that the Qucs package has been installed
using the directions given on the Qucs sourceforge.net web site. Other loca-
tions are allowed, using a home directory like for example, /home/mike/qucs-
0.0.16/qucs-core/src/components/verilog. However, use of a home directory
does assume that Qucs has been installed in the specified home directory.

Provided the compilation is error free the following message,
or similar, is displayed on the computer screen.

[info...] admsXml-2.3.0 (1188) Mar 27 2011 13:52:07

[warning] RnonLin: device not handled by the adms qucs interface

[warning] please ensure extra code to be added to the interface

[info...] RnonLin.core.cpp and RnonLin.core.h: files created

[info...] elapsed time: O (second)

[info...] admst iterations: 9246 (2127 freed)

Repeat the first compilation of file RnonLin.va with a
second compile using the command:

admsXml RnonLin.va -e qucsVersion.xml -e qucsMODULEdefs.xml

Again, provided the compilation is error free the following
message, or similar, is displayed on the computer screen.
[info...] admsXml-2.3.0 (1188) Mar 27 2011 13:52:07
[warning] RnonLin: device not handled by the adms qucs interface
[warning] please ensure extra code to be added to the interface
[info...] RnonLin.defs.h: file created

[info...] elapsed time: O (second)
[info...] admst iterations: 7403 (1367 freed)

Repeat the second compilation of file RnonLin.va with a
third compile using the command:

admsXml RnonLin.va -e qucsVersion.xml -e qucsMODULEgui.xml

Again, provided the compilation is error free the following
message, or similar, is displayed on the computer screen.

[info...] admsXml-2.3.0 (1188) Mar 27 2011 13:52:07

[warning] RnonLin: device not handled by the adms qucs interface
[warning] please ensure extra code to be added to the interface
[info...] RnonLin.gui.cpp and RnonLin.gui.h: files created

[info...] elapsed time: O (second)

[info...] admst iterations: 7522 (1342 freed)

Repeat the third compilation of file RnonLin.va with a
fourth compile using the command:

admsXml RnonLin.va -e analogfunction.xml

Again, provided the compilation is error free the following
message, or similar, is displayed on the computer screen.
[info...] admsXml-2.3.0 (1188) Mar 27 2011 13:52:07
[info...] RnonLin.analogfunction.h created
[info...] RnonLin.analogfunction.cpp created

[info...] elapsed time: O (second)
[info...] admst iterations: 4654 (1085 freed)

VI. CONSTRUCTION OF A QUCS VERILOG-A MODEL FOR
A VOLTAGE CONTROLLED NON-LINEAR RESISTOR: PART
3; COMBINING RLIN.GUI.CPP CODE WITH QUCS C++
SYMBOL CODE FOR COMPONENT RNONLIN

Provided the instructions in section 2 of this
paper were correctly actioned directory /tmp/qucs-
core/src/components/verilog should contain the
following files relating to component RnonLin: (1)

RnonLin.va, (2) RnonLin.core.cpp, (3) RnonLin.core.h,
4) RnonLin.defs.h, (5) RnonLin.gui.cpp, (6)
RnonLin.gui.h, @) RnonLin.analog function.cpp,
and (8) RnonLin.analogfunction.h. Copy file (5)
RnonLin.gui.cpp, and file (6) RnonLin.gui.h, to Qucs
directory /tmp/qucs/qucs/components while leaving a
copy of all eight RnonLin files in directory /tmp/qucs-
core/src/components/verilog. Change your working
directory to Qucs directory /tmp/qucs/qucs/components
and rename file RnonlLin.gui.cpp to RnonLin.cpp and
file RnonLin.gui.h to RnonLin.h. The next stage in the
Verilog-A model construction procedure involves making
three changes to the RnonLin.cpp file (Fig. 6)*: (1) change
the file name from RnonLin.gui.h to RnonLin.h, and the
T in the line Name = "T*; to some other more appropriate
abbreviation, like Name = “RNL®“; (2) replace the blue
instruction text at the bottom of file RnonLin.cpp with the
C++ code held in file RnonLin.dat, see Fig.5; (3) replace
the green highlighted code in file RnonLin.cpp with the
following C++ code”:

/I tx = x2+4;
/'ty = yl+4;
tx = -10; ty = -24;

VII. CONSTRUCTION OF A QUCS VERILOG-A MODEL FOR
A VOLTAGE CONTROLLED NON-LINEAR RESISTOR: PART
4, CONSTRUCTING A 32 BIT BY 32 BIT ICON FOR
COMPONENT RNONLIN

Qucs directory /tmp/qucs/qucs/bitmaps contains 32 bit by
32 bit png graphics files. These files are displayed on the left-
hand side of the Qucs main window when the ”Components*

4Please note the required changes are highlighted in different colours for
demonstration purposes; normally the C++ files generated by the ADMS
Verilog-A synthesizer/compiler contain only text with a black attribute.

SEach time a new model is constructed the initial values for tx and ty,
highlighted in green, will have a different value depending on the size of the
new schematic symbol.

tag is clicked and represent a simple outline of a schematic
symbol. However, because of the 32 bit by 32 bit bitmap
representation they are often only very approximate pictures
of the schematic capture symbol and in general do not contain
the detail of the schematic symbol. Fig.7 illustrates an enlarged
view of simple icon picture for the RnonLin icon. In this
picture the non-linear resistive equation given on the model
schematic symbol has been replaced by the letters RNL.
When finished the png file must be saved in Qucs directory
/tmp/qucs/ques/bitmaps as file RnonLin.png, i.e. with the
same name as the model name in file Rnon Lin.cpp. The Gimp
Image Editor and KolourPaint program are ideal tools for
constructing Qucs component icon pictures. After constructing
the RnonLin icon picture and saving it as file RnonLin.png
the name of the new model must be added to the compo-

I
* RnonLin.cpp - device implementations for RnonLin module

* This is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)

* any later version.

*

#include "RnonLin.gui.h"

RnonLin::RnonLin()

{Description = QObject:tr ("RnonLin verilog device"),

Props.append (new Property ("R0", "1000.0", false,
QObiject:tr ("Nominal resistance at alpha and beta = 0")
+" ("+QObject:tr ("Ohm")+")"));

Props.append (new Property ("alpha”, "0.1", false,
QObiject:tr ("Linear resistance coefficient”)
+" ("+QObject::tr ("Ohm/\/")+")"));

Props.append (new Property ("beta”, "0.05", false,
QObiject:tr ("Quadratic reistance coefficient")
+" ("+QObject:tr ("Ohm/(V"2)")+")"));

Props.append (new Property ("Temp", "26.85", false,
QObiject:tr ("simulation temperature”)));

createSymbol ();

Model = "RnonLin™;
Name ="T"

}
Component * RnonLin::newOne()

RnonLin * p = new RnonLin();
p->Props.getFirst()->Value = Props.getFirst()->Value;
p->recreate(0);

retumn p;

}
Element * RnonLin::info(QString& Name, char * &BitmapFile, bool getNewOne)

{
Name = QObject:tr("RnonLin");
BitmapFile = (char *) "RnonLin";

iflgetNewOne) retumn new RnonLin();
retun 0;

}
void RnonLin::create Symbol()

{f put in here symbol drawing code and terminal definitions

}

Fig. 6. RnonLin.cpp C++ code with items for change indicated in red, green
and blue

Qucs Editor 0.0.16 - File: /home/mike/.qucs/QucsEDDVerilogA_prj/RnonLin.dat

Fig. 5.

nent pictures list in file Makefile.am located in directory
/tmp/qucs/qucs/bitmaps. Add the file name RnonLin.png
to the end of list ”XPMS =*“ and save file Makefile.am.

RnonLin.png - KolourPaint

File Edit View Image Colors Settings Help

D New open | save

& Zoomout [1.500% 4@ | ~ | &

57 1
Al
/I; |
P &
b W
i g8 1
@=
RO
¥ XaY)

m
N

Rl

Fig. 7. Enlarged picture of a 32 bit by 32 bit RnonLin icon picture

VIII. CONSTRUCTION OF A QUCS VERILOG-A MODEL
FOR A VOLTAGE CONTROLLED NON-LINEAR RESISTOR:
PART 5; REGISTERING THE RNONLIN VERILOG-A MODEL
WITH THE QUCS-CORE C++ CODE

Having constructed the C++ code for the new Verilog-
A model, and its associated schematic capture symbol, all
that remains to do is to register the new symbol with (1)
the qucs-core C++ code and (2) with the qucs C++ code.
In this section of these notes the instructions for merging
the new model code with the qucs-core code is presented.
The next section continues the same theme and introduces
the procedure for registering the new model with the GUI
qucs C++ code. Fig. 8 gives details of the RnonLin entries
that have to be made to file Makefile.am in directory

=3 Line: 1 - Column: 1
// symbol drawing code
Lines.append (new Line (-80, 0, -70, 0, QPen (QColor ("#000080"), 2, Qt::50lidLine)));
Lines.append (new Line (-70, -20, 150, -20, QPen (QColor ("#), 2, Qt::50lidLine)));
Lines.append (new Line (-70, 20, 150, 20, QPen (QColor ("#00 "), 2, Qt::SclidLine)));
Lines.append (new Line (-70, -20, -70, 20, QPen (QColor ("#000080"), 2, Qt:: JOlldllFE)));
Lines.append (new Line (130, 0, 160, 0, QPen (QColor ("#0000), 2, Qt::S0lidLine))
Lines.append (new Line (1530, -20, 150, 20, QPen (QColor ("#000080" 2 Oz aolldllre))
Texts.append (new Text (-40, -10, "R=R0 \x00B7(l + A \x00B7 V_{R} + B \x00B7 V (R} \xCCBﬂ V_{R}", QColor ("#aaO000"), 8, 1, 0));
// terminal definitions R
Ports.append (new Port (-80, 0)); /* Pin */
Ports.append (new Port (160, 0)); /* Pout */
// symbol boundings
x1l = -80; yl =
x2 = 160; y2 =
// property text position
tx = -10; ty = 24;

Qucs generated schematic capture C++ symbol code for the RnonLin non-linear resistor example

/tmp/qucs-core/src/components/verilog. In Fig. 8 the ad-
ditions are highlighted in red. After adding the RnonLin
model information to file Makefile.am save the modified
file in directory /tmp/qucs-core/src/components/verilog. All
that remains to do when registering a new model with the
qucs-core C++ code is to add the name of the new model
to two additional files: (1) change the working directory to
/tmp/qucs-core/src/components and open file components.h
for editing with a text editor. Add an include statement for the
RnonLin model as indicated in the following code section:

#include "verilog/swcapZMl.core.h"
#include "verilog/swcapBLInt.core.h"
#include "verilog/RnonLin.core.h"
#include "verilog/dff_SR.core.h"
#include "verilog/tff_SR.core.h"

(2) change the working directory to /tmp/qucs-core/src and
open file module.cpp for editing with a text editor. Add a
REGISTER_CIRCUIT statement for the RnonLin model
as indicated in the following code section:

REGISTER_CIRCUIT
REGISTER_CIRCUIT
REGISTER_CIRCUIT

(HPF)
(
(
REGISTER_CIRCUIT (
(
(

swcapZMl)
swcapBLInt) ;
RnonLin) ;
dff_SR);

tff SR);

REGISTER_CIRCUIT
REGISTER_CIRCUIT

Note that the names of the Verilog-A models on either side
of the RnonLin model entry are most likely to vary from the
names given in the last two code segments. The code lists
shown are different to the standard Qucs-0.0.16 SVN code
due to previously added user constructed Verilog-A models.
After editing files components.h and module.cpp make sure
they are saved in their respective directories.

the verilog devices library rules
noinst_LIBRARIES = libverilog.a

libverilog_a_SOURCES = HBT_X.analogfunction.cpp HBT_X.core.cpp \
hicumL2V2p1.analogfunction.cpp hicumL2V2p1.core.cpp \

RnonLin.analogfunction.cpp RnonLin.core.cpp \
dff_SR.analogfunction.cpp dff_SR.core.cpp \
tff_SR.analogfunction.cpp tff_SR.core.cpp \

v
hpribin4bit.analogfunction.cpp hpribin4bit.core.cpp

noinst_ HEADERS = HBT_X.analogfunction.h HBT_X.defs.h HBT_X.core.h \
hicumL2V2p1.analogfunction.h hicumL2V2p1.defs.h hicumL2V2p1.core.h \
v

swcapBLInt.analogfunction.h swcapBLInt.defs.h swcapBLInt.core.h \
RnonLin.analogfunction.h RnonLin.defs.h RnonLin.core.h \
\
dff_SR.analogfunction.h dff_SR.defs.h dff_SR.core.h\
tff_SR.analogfunction.h tff_SR.defs.h tff_SR.core.h \

\j
hpribin4bit.analogfunction.h hpribin4bit.defs.h hpribin4bit.core.h

VERILOG_FILES = constants.vams disciplines.vams \
fbh_hbt-2_2a.va hicumL2V2p11.va mod_amp.va hicumL2V2p22.va log_amp.va \

greytobinary4bit.va comp_1bit.va comp_2bit.va comp_4bit.va hpribin4bit.va \
SPA.va LPF.va HPF.va swcapZM1.va swcapBLInt.va RnonLin.va

if MAINTAINER_MODE

RnonLin.analogfunction.cpp: analogfunction.xml
RnonLin.analogfunction.cpp: RnonLin.va

$(ADMSXML) $< -e analogfunction.xml
RnonLin.core.cpp: RnonLin.defs.h qucsVersion.xml qucsMODULEcore.xml
RnonLin.core.cpp: RnonLin.va

$(ADMSXML) $< -e qucsVersion.xml -e qucsMODULEcore.xml
RnonLin.defs.h: qucsVersion.xml qucsMODULEdefs.xml
RnonLin.defs.h: RnonLin.va

$(ADMSXML) $< -e qucsVersion.xml -e qucsMODULEdefs.xml
RnonLin.gui.cpp: qucsVersion.xml qucsMODULEgui.xml
RnonLin.gui.cpp: RnonLin.va

$(ADMSXML) $< -e qucsVersion.xml -e qucsMODULEgui.xml

Fig. 8. Additions to qucs-core Makefile.am located in directory /tmp/qucs-
core/src/components/verilog: the black arrows indicate a continuing list

IX. CONSTRUCTION OF A QUCS VERILOG-A MODEL FOR

A VOLTAGE CONTROLLED NON-LINEAR RESISTOR: PART

5; REGISTERING THE RNONLIN VERILOG-A MODEL WITH
THE QUCS C++ CODE

Change the current directory to directory
/tmp/qucs/qucs/components and open file Makefile.am
for editing with a text editor. Add the red highlighted text to
the Makefile.am as indicated below in the short segment
of C++ code:

libcomponents_a_SOURCES=ccocervirnennenns
LPFE.cpp HPF.cpp swcapBLInt.cpp RonLin.cpp
noinst_ HEADERS= ...

LPEh HPFh swcapBLInth RonLin.h
Again all that remains to do when registering a new model
with the qucs C++ code is to add the name of the new model
to two additional files: (1) change the working directory to
/tmp/qucs/qucs/components and open file components.h
for editing with a text editor. Add an include statement for the
RnonLin model as indicated in the following code section:

#include "swcapZMl.h"

#include "swcapBLInt.h"

#include "RnonLin.h"

#include "dff_SR.h"

#include "tff_SR.h"

(2) change the working directory to /tmp/qucs/ques and

open file module.cpp for editing with a text editor. Add a
REGISTER_V ERILOG statement for the RnonLin model
as indicated in the following code section:

REGISTER_VERILOGA_1
REGISTER_VERILOGA_1
REGISTER_VERILOGA_1
REGISTER_VERILOGA_1

photodiode) ;
phototransistor);
nigbt) ;

RnonLin) ;

—~ o~~~

Note new Verilog-A models are normally added at the end
of the module.cpp Verilog-A model register list. After editing
files components.h and module.cpp make sure they are saved
in their respective directories.

X. CONSTRUCTION OF A QUCS VERILOG-A MODEL FOR A
VOLTAGE CONTROLLED NON-LINEAR RESISTOR: PART 6;
FINISHING MODEL CONSTRUCTION AND TESTING

The last phase in the construction of a new Verilog-A model
for Qucs is to recompile the qucs and qucs-core C++ code. If
a new Verilog-A model has been added to the Qucs circuit
simulator correctly compilation of the modified C++ code
should take place without error. However, if the C++ compiler
reports one or more compilation errors check the code section
where the error is reported to have occurred and make the
necessary changes to correct it. Finally test the new Verilog-
A model correctly operates in different simulation domains.
Running the same test circuit as that shown in Fig.2 indicates
that the Verilog-A model functions correctly with a run time
similar to the EDD non-linear resistance model.®

REFERENCES

[1] L. Lemaitre, W. Grabinski and C. McAndrew, "Compact device modeling
using Verilog-A and ADMS*, Electron Technology Internet Journal. vol
35, pp. 1-5, 2003.

[2] D. Fitzpatrick and 1. Miller,
with the Verilog-A language®,
Boston/Dordrecht/London,1998.

K. Kundert and O. Zinke, "The Designer’s Guide to Verilog AMS”,
Kluwer Academic Publishers, Boston/Dordrecht/London,2004.
Accellera, “Verilog-AMS Language Reference Manual, Version 2.27,
2004, http://www.accellera.org [accessed April 2011].

S. Jahn and H. Parruitte, “Qucs: A Description; Verilog-AMS interface”,
2006, http://qucs.sourceforge.net/docs/Verilog.pdf, [accessed April 2011].
M.E. Brinson and S.Jahn, “Building device models and circuit macro-
models with the Qucs GPL circuit simulator”, MOS-AK meeting, Frank-
furt/Oder, Germany, 2009, http://www.mos-ak.org/frankfurt_o/, [ac-
cessed April 2011].

S. Maruthamuthu, “Qucs based Verilog-A small signal RF model of
a CNFET”, MOS-AK meeting, Paris, France, 2011, http://www.mos-
ak.org/paris/posters/P09_ Maruthamuthu_ MOS-AK _ Paris.pdf.

M.E. Brinson, S. Jahn and H. Nabijou, “Qucs, SPICE and Mod-
elica equation-defined modelling techniques for the construction
of compact device models based on a common model tem-
plate structure”, MOS-AK meeting, Paris, France, 2011, http://mos-
ak.org/paris/papers/P06 _ Brinson - MOS-AK _ Paris.pdf.

”Analog behavioral
Kluwer ~Academic

modeling
Publishers,

(3]
(4]
(31
(6]

(71

(8]

OThis is not surprising as the RnonLin model only contains a small
number of floating point calculations, implying that the simulation run time
is dominated by the model call overhead.

