Qucs-core
0.0.19
|
00001 // Copyright 2005, Google Inc. 00002 // All rights reserved. 00003 // 00004 // Redistribution and use in source and binary forms, with or without 00005 // modification, are permitted provided that the following conditions are 00006 // met: 00007 // 00008 // * Redistributions of source code must retain the above copyright 00009 // notice, this list of conditions and the following disclaimer. 00010 // * Redistributions in binary form must reproduce the above 00011 // copyright notice, this list of conditions and the following disclaimer 00012 // in the documentation and/or other materials provided with the 00013 // distribution. 00014 // * Neither the name of Google Inc. nor the names of its 00015 // contributors may be used to endorse or promote products derived from 00016 // this software without specific prior written permission. 00017 // 00018 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00019 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00020 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 00021 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 00022 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00023 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 00024 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 00025 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 00026 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 00027 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 00028 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00029 // 00030 // Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee) 00031 // 00032 // The Google C++ Testing Framework (Google Test) 00033 // 00034 // This header file declares functions and macros used internally by 00035 // Google Test. They are subject to change without notice. 00036 00037 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ 00038 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ 00039 00040 #include "gtest/internal/gtest-port.h" 00041 00042 #if GTEST_OS_LINUX 00043 # include <stdlib.h> 00044 # include <sys/types.h> 00045 # include <sys/wait.h> 00046 # include <unistd.h> 00047 #endif // GTEST_OS_LINUX 00048 00049 #if GTEST_HAS_EXCEPTIONS 00050 # include <stdexcept> 00051 #endif 00052 00053 #include <ctype.h> 00054 #include <float.h> 00055 #include <string.h> 00056 #include <iomanip> 00057 #include <limits> 00058 #include <set> 00059 00060 #include "gtest/gtest-message.h" 00061 #include "gtest/internal/gtest-string.h" 00062 #include "gtest/internal/gtest-filepath.h" 00063 #include "gtest/internal/gtest-type-util.h" 00064 00065 // Due to C++ preprocessor weirdness, we need double indirection to 00066 // concatenate two tokens when one of them is __LINE__. Writing 00067 // 00068 // foo ## __LINE__ 00069 // 00070 // will result in the token foo__LINE__, instead of foo followed by 00071 // the current line number. For more details, see 00072 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6 00073 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar) 00074 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar 00075 00076 class ProtocolMessage; 00077 namespace proto2 { class Message; } 00078 00079 namespace testing { 00080 00081 // Forward declarations. 00082 00083 class AssertionResult; // Result of an assertion. 00084 class Message; // Represents a failure message. 00085 class Test; // Represents a test. 00086 class TestInfo; // Information about a test. 00087 class TestPartResult; // Result of a test part. 00088 class UnitTest; // A collection of test cases. 00089 00090 template <typename T> 00091 ::std::string PrintToString(const T& value); 00092 00093 namespace internal { 00094 00095 struct TraceInfo; // Information about a trace point. 00096 class ScopedTrace; // Implements scoped trace. 00097 class TestInfoImpl; // Opaque implementation of TestInfo 00098 class UnitTestImpl; // Opaque implementation of UnitTest 00099 00100 // How many times InitGoogleTest() has been called. 00101 GTEST_API_ extern int g_init_gtest_count; 00102 00103 // The text used in failure messages to indicate the start of the 00104 // stack trace. 00105 GTEST_API_ extern const char kStackTraceMarker[]; 00106 00107 // Two overloaded helpers for checking at compile time whether an 00108 // expression is a null pointer literal (i.e. NULL or any 0-valued 00109 // compile-time integral constant). Their return values have 00110 // different sizes, so we can use sizeof() to test which version is 00111 // picked by the compiler. These helpers have no implementations, as 00112 // we only need their signatures. 00113 // 00114 // Given IsNullLiteralHelper(x), the compiler will pick the first 00115 // version if x can be implicitly converted to Secret*, and pick the 00116 // second version otherwise. Since Secret is a secret and incomplete 00117 // type, the only expression a user can write that has type Secret* is 00118 // a null pointer literal. Therefore, we know that x is a null 00119 // pointer literal if and only if the first version is picked by the 00120 // compiler. 00121 char IsNullLiteralHelper(Secret* p); 00122 char (&IsNullLiteralHelper(...))[2]; // NOLINT 00123 00124 // A compile-time bool constant that is true if and only if x is a 00125 // null pointer literal (i.e. NULL or any 0-valued compile-time 00126 // integral constant). 00127 #ifdef GTEST_ELLIPSIS_NEEDS_POD_ 00128 // We lose support for NULL detection where the compiler doesn't like 00129 // passing non-POD classes through ellipsis (...). 00130 # define GTEST_IS_NULL_LITERAL_(x) false 00131 #else 00132 # define GTEST_IS_NULL_LITERAL_(x) \ 00133 (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1) 00134 #endif // GTEST_ELLIPSIS_NEEDS_POD_ 00135 00136 // Appends the user-supplied message to the Google-Test-generated message. 00137 GTEST_API_ std::string AppendUserMessage( 00138 const std::string& gtest_msg, const Message& user_msg); 00139 00140 #if GTEST_HAS_EXCEPTIONS 00141 00142 // This exception is thrown by (and only by) a failed Google Test 00143 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions 00144 // are enabled). We derive it from std::runtime_error, which is for 00145 // errors presumably detectable only at run time. Since 00146 // std::runtime_error inherits from std::exception, many testing 00147 // frameworks know how to extract and print the message inside it. 00148 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error { 00149 public: 00150 explicit GoogleTestFailureException(const TestPartResult& failure); 00151 }; 00152 00153 #endif // GTEST_HAS_EXCEPTIONS 00154 00155 // A helper class for creating scoped traces in user programs. 00156 class GTEST_API_ ScopedTrace { 00157 public: 00158 // The c'tor pushes the given source file location and message onto 00159 // a trace stack maintained by Google Test. 00160 ScopedTrace(const char* file, int line, const Message& message); 00161 00162 // The d'tor pops the info pushed by the c'tor. 00163 // 00164 // Note that the d'tor is not virtual in order to be efficient. 00165 // Don't inherit from ScopedTrace! 00166 ~ScopedTrace(); 00167 00168 private: 00169 GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace); 00170 } GTEST_ATTRIBUTE_UNUSED_; // A ScopedTrace object does its job in its 00171 // c'tor and d'tor. Therefore it doesn't 00172 // need to be used otherwise. 00173 00174 // Constructs and returns the message for an equality assertion 00175 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure. 00176 // 00177 // The first four parameters are the expressions used in the assertion 00178 // and their values, as strings. For example, for ASSERT_EQ(foo, bar) 00179 // where foo is 5 and bar is 6, we have: 00180 // 00181 // expected_expression: "foo" 00182 // actual_expression: "bar" 00183 // expected_value: "5" 00184 // actual_value: "6" 00185 // 00186 // The ignoring_case parameter is true iff the assertion is a 00187 // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will 00188 // be inserted into the message. 00189 GTEST_API_ AssertionResult EqFailure(const char* expected_expression, 00190 const char* actual_expression, 00191 const std::string& expected_value, 00192 const std::string& actual_value, 00193 bool ignoring_case); 00194 00195 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE. 00196 GTEST_API_ std::string GetBoolAssertionFailureMessage( 00197 const AssertionResult& assertion_result, 00198 const char* expression_text, 00199 const char* actual_predicate_value, 00200 const char* expected_predicate_value); 00201 00202 // This template class represents an IEEE floating-point number 00203 // (either single-precision or double-precision, depending on the 00204 // template parameters). 00205 // 00206 // The purpose of this class is to do more sophisticated number 00207 // comparison. (Due to round-off error, etc, it's very unlikely that 00208 // two floating-points will be equal exactly. Hence a naive 00209 // comparison by the == operation often doesn't work.) 00210 // 00211 // Format of IEEE floating-point: 00212 // 00213 // The most-significant bit being the leftmost, an IEEE 00214 // floating-point looks like 00215 // 00216 // sign_bit exponent_bits fraction_bits 00217 // 00218 // Here, sign_bit is a single bit that designates the sign of the 00219 // number. 00220 // 00221 // For float, there are 8 exponent bits and 23 fraction bits. 00222 // 00223 // For double, there are 11 exponent bits and 52 fraction bits. 00224 // 00225 // More details can be found at 00226 // http://en.wikipedia.org/wiki/IEEE_floating-point_standard. 00227 // 00228 // Template parameter: 00229 // 00230 // RawType: the raw floating-point type (either float or double) 00231 template <typename RawType> 00232 class FloatingPoint { 00233 public: 00234 // Defines the unsigned integer type that has the same size as the 00235 // floating point number. 00236 typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits; 00237 00238 // Constants. 00239 00240 // # of bits in a number. 00241 static const size_t kBitCount = 8*sizeof(RawType); 00242 00243 // # of fraction bits in a number. 00244 static const size_t kFractionBitCount = 00245 std::numeric_limits<RawType>::digits - 1; 00246 00247 // # of exponent bits in a number. 00248 static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount; 00249 00250 // The mask for the sign bit. 00251 static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1); 00252 00253 // The mask for the fraction bits. 00254 static const Bits kFractionBitMask = 00255 ~static_cast<Bits>(0) >> (kExponentBitCount + 1); 00256 00257 // The mask for the exponent bits. 00258 static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask); 00259 00260 // How many ULP's (Units in the Last Place) we want to tolerate when 00261 // comparing two numbers. The larger the value, the more error we 00262 // allow. A 0 value means that two numbers must be exactly the same 00263 // to be considered equal. 00264 // 00265 // The maximum error of a single floating-point operation is 0.5 00266 // units in the last place. On Intel CPU's, all floating-point 00267 // calculations are done with 80-bit precision, while double has 64 00268 // bits. Therefore, 4 should be enough for ordinary use. 00269 // 00270 // See the following article for more details on ULP: 00271 // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ 00272 static const size_t kMaxUlps = 4; 00273 00274 // Constructs a FloatingPoint from a raw floating-point number. 00275 // 00276 // On an Intel CPU, passing a non-normalized NAN (Not a Number) 00277 // around may change its bits, although the new value is guaranteed 00278 // to be also a NAN. Therefore, don't expect this constructor to 00279 // preserve the bits in x when x is a NAN. 00280 explicit FloatingPoint(const RawType& x) { u_.value_ = x; } 00281 00282 // Static methods 00283 00284 // Reinterprets a bit pattern as a floating-point number. 00285 // 00286 // This function is needed to test the AlmostEquals() method. 00287 static RawType ReinterpretBits(const Bits bits) { 00288 FloatingPoint fp(0); 00289 fp.u_.bits_ = bits; 00290 return fp.u_.value_; 00291 } 00292 00293 // Returns the floating-point number that represent positive infinity. 00294 static RawType Infinity() { 00295 return ReinterpretBits(kExponentBitMask); 00296 } 00297 00298 // Returns the maximum representable finite floating-point number. 00299 static RawType Max(); 00300 00301 // Non-static methods 00302 00303 // Returns the bits that represents this number. 00304 const Bits &bits() const { return u_.bits_; } 00305 00306 // Returns the exponent bits of this number. 00307 Bits exponent_bits() const { return kExponentBitMask & u_.bits_; } 00308 00309 // Returns the fraction bits of this number. 00310 Bits fraction_bits() const { return kFractionBitMask & u_.bits_; } 00311 00312 // Returns the sign bit of this number. 00313 Bits sign_bit() const { return kSignBitMask & u_.bits_; } 00314 00315 // Returns true iff this is NAN (not a number). 00316 bool is_nan() const { 00317 // It's a NAN if the exponent bits are all ones and the fraction 00318 // bits are not entirely zeros. 00319 return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0); 00320 } 00321 00322 // Returns true iff this number is at most kMaxUlps ULP's away from 00323 // rhs. In particular, this function: 00324 // 00325 // - returns false if either number is (or both are) NAN. 00326 // - treats really large numbers as almost equal to infinity. 00327 // - thinks +0.0 and -0.0 are 0 DLP's apart. 00328 bool AlmostEquals(const FloatingPoint& rhs) const { 00329 // The IEEE standard says that any comparison operation involving 00330 // a NAN must return false. 00331 if (is_nan() || rhs.is_nan()) return false; 00332 00333 return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_) 00334 <= kMaxUlps; 00335 } 00336 00337 private: 00338 // The data type used to store the actual floating-point number. 00339 union FloatingPointUnion { 00340 RawType value_; // The raw floating-point number. 00341 Bits bits_; // The bits that represent the number. 00342 }; 00343 00344 // Converts an integer from the sign-and-magnitude representation to 00345 // the biased representation. More precisely, let N be 2 to the 00346 // power of (kBitCount - 1), an integer x is represented by the 00347 // unsigned number x + N. 00348 // 00349 // For instance, 00350 // 00351 // -N + 1 (the most negative number representable using 00352 // sign-and-magnitude) is represented by 1; 00353 // 0 is represented by N; and 00354 // N - 1 (the biggest number representable using 00355 // sign-and-magnitude) is represented by 2N - 1. 00356 // 00357 // Read http://en.wikipedia.org/wiki/Signed_number_representations 00358 // for more details on signed number representations. 00359 static Bits SignAndMagnitudeToBiased(const Bits &sam) { 00360 if (kSignBitMask & sam) { 00361 // sam represents a negative number. 00362 return ~sam + 1; 00363 } else { 00364 // sam represents a positive number. 00365 return kSignBitMask | sam; 00366 } 00367 } 00368 00369 // Given two numbers in the sign-and-magnitude representation, 00370 // returns the distance between them as an unsigned number. 00371 static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1, 00372 const Bits &sam2) { 00373 const Bits biased1 = SignAndMagnitudeToBiased(sam1); 00374 const Bits biased2 = SignAndMagnitudeToBiased(sam2); 00375 return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1); 00376 } 00377 00378 FloatingPointUnion u_; 00379 }; 00380 00381 // We cannot use std::numeric_limits<T>::max() as it clashes with the max() 00382 // macro defined by <windows.h>. 00383 template <> 00384 inline float FloatingPoint<float>::Max() { return FLT_MAX; } 00385 template <> 00386 inline double FloatingPoint<double>::Max() { return DBL_MAX; } 00387 00388 // Typedefs the instances of the FloatingPoint template class that we 00389 // care to use. 00390 typedef FloatingPoint<float> Float; 00391 typedef FloatingPoint<double> Double; 00392 00393 // In order to catch the mistake of putting tests that use different 00394 // test fixture classes in the same test case, we need to assign 00395 // unique IDs to fixture classes and compare them. The TypeId type is 00396 // used to hold such IDs. The user should treat TypeId as an opaque 00397 // type: the only operation allowed on TypeId values is to compare 00398 // them for equality using the == operator. 00399 typedef const void* TypeId; 00400 00401 template <typename T> 00402 class TypeIdHelper { 00403 public: 00404 // dummy_ must not have a const type. Otherwise an overly eager 00405 // compiler (e.g. MSVC 7.1 & 8.0) may try to merge 00406 // TypeIdHelper<T>::dummy_ for different Ts as an "optimization". 00407 static bool dummy_; 00408 }; 00409 00410 template <typename T> 00411 bool TypeIdHelper<T>::dummy_ = false; 00412 00413 // GetTypeId<T>() returns the ID of type T. Different values will be 00414 // returned for different types. Calling the function twice with the 00415 // same type argument is guaranteed to return the same ID. 00416 template <typename T> 00417 TypeId GetTypeId() { 00418 // The compiler is required to allocate a different 00419 // TypeIdHelper<T>::dummy_ variable for each T used to instantiate 00420 // the template. Therefore, the address of dummy_ is guaranteed to 00421 // be unique. 00422 return &(TypeIdHelper<T>::dummy_); 00423 } 00424 00425 // Returns the type ID of ::testing::Test. Always call this instead 00426 // of GetTypeId< ::testing::Test>() to get the type ID of 00427 // ::testing::Test, as the latter may give the wrong result due to a 00428 // suspected linker bug when compiling Google Test as a Mac OS X 00429 // framework. 00430 GTEST_API_ TypeId GetTestTypeId(); 00431 00432 // Defines the abstract factory interface that creates instances 00433 // of a Test object. 00434 class TestFactoryBase { 00435 public: 00436 virtual ~TestFactoryBase() {} 00437 00438 // Creates a test instance to run. The instance is both created and destroyed 00439 // within TestInfoImpl::Run() 00440 virtual Test* CreateTest() = 0; 00441 00442 protected: 00443 TestFactoryBase() {} 00444 00445 private: 00446 GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase); 00447 }; 00448 00449 // This class provides implementation of TeastFactoryBase interface. 00450 // It is used in TEST and TEST_F macros. 00451 template <class TestClass> 00452 class TestFactoryImpl : public TestFactoryBase { 00453 public: 00454 virtual Test* CreateTest() { return new TestClass; } 00455 }; 00456 00457 #if GTEST_OS_WINDOWS 00458 00459 // Predicate-formatters for implementing the HRESULT checking macros 00460 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED} 00461 // We pass a long instead of HRESULT to avoid causing an 00462 // include dependency for the HRESULT type. 00463 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr, 00464 long hr); // NOLINT 00465 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr, 00466 long hr); // NOLINT 00467 00468 #endif // GTEST_OS_WINDOWS 00469 00470 // Types of SetUpTestCase() and TearDownTestCase() functions. 00471 typedef void (*SetUpTestCaseFunc)(); 00472 typedef void (*TearDownTestCaseFunc)(); 00473 00474 // Creates a new TestInfo object and registers it with Google Test; 00475 // returns the created object. 00476 // 00477 // Arguments: 00478 // 00479 // test_case_name: name of the test case 00480 // name: name of the test 00481 // type_param the name of the test's type parameter, or NULL if 00482 // this is not a typed or a type-parameterized test. 00483 // value_param text representation of the test's value parameter, 00484 // or NULL if this is not a type-parameterized test. 00485 // fixture_class_id: ID of the test fixture class 00486 // set_up_tc: pointer to the function that sets up the test case 00487 // tear_down_tc: pointer to the function that tears down the test case 00488 // factory: pointer to the factory that creates a test object. 00489 // The newly created TestInfo instance will assume 00490 // ownership of the factory object. 00491 GTEST_API_ TestInfo* MakeAndRegisterTestInfo( 00492 const char* test_case_name, 00493 const char* name, 00494 const char* type_param, 00495 const char* value_param, 00496 TypeId fixture_class_id, 00497 SetUpTestCaseFunc set_up_tc, 00498 TearDownTestCaseFunc tear_down_tc, 00499 TestFactoryBase* factory); 00500 00501 // If *pstr starts with the given prefix, modifies *pstr to be right 00502 // past the prefix and returns true; otherwise leaves *pstr unchanged 00503 // and returns false. None of pstr, *pstr, and prefix can be NULL. 00504 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr); 00505 00506 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P 00507 00508 // State of the definition of a type-parameterized test case. 00509 class GTEST_API_ TypedTestCasePState { 00510 public: 00511 TypedTestCasePState() : registered_(false) {} 00512 00513 // Adds the given test name to defined_test_names_ and return true 00514 // if the test case hasn't been registered; otherwise aborts the 00515 // program. 00516 bool AddTestName(const char* file, int line, const char* case_name, 00517 const char* test_name) { 00518 if (registered_) { 00519 fprintf(stderr, "%s Test %s must be defined before " 00520 "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n", 00521 FormatFileLocation(file, line).c_str(), test_name, case_name); 00522 fflush(stderr); 00523 posix::Abort(); 00524 } 00525 defined_test_names_.insert(test_name); 00526 return true; 00527 } 00528 00529 // Verifies that registered_tests match the test names in 00530 // defined_test_names_; returns registered_tests if successful, or 00531 // aborts the program otherwise. 00532 const char* VerifyRegisteredTestNames( 00533 const char* file, int line, const char* registered_tests); 00534 00535 private: 00536 bool registered_; 00537 ::std::set<const char*> defined_test_names_; 00538 }; 00539 00540 // Skips to the first non-space char after the first comma in 'str'; 00541 // returns NULL if no comma is found in 'str'. 00542 inline const char* SkipComma(const char* str) { 00543 const char* comma = strchr(str, ','); 00544 if (comma == NULL) { 00545 return NULL; 00546 } 00547 while (IsSpace(*(++comma))) {} 00548 return comma; 00549 } 00550 00551 // Returns the prefix of 'str' before the first comma in it; returns 00552 // the entire string if it contains no comma. 00553 inline std::string GetPrefixUntilComma(const char* str) { 00554 const char* comma = strchr(str, ','); 00555 return comma == NULL ? str : std::string(str, comma); 00556 } 00557 00558 // TypeParameterizedTest<Fixture, TestSel, Types>::Register() 00559 // registers a list of type-parameterized tests with Google Test. The 00560 // return value is insignificant - we just need to return something 00561 // such that we can call this function in a namespace scope. 00562 // 00563 // Implementation note: The GTEST_TEMPLATE_ macro declares a template 00564 // template parameter. It's defined in gtest-type-util.h. 00565 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types> 00566 class TypeParameterizedTest { 00567 public: 00568 // 'index' is the index of the test in the type list 'Types' 00569 // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase, 00570 // Types). Valid values for 'index' are [0, N - 1] where N is the 00571 // length of Types. 00572 static bool Register(const char* prefix, const char* case_name, 00573 const char* test_names, int index) { 00574 typedef typename Types::Head Type; 00575 typedef Fixture<Type> FixtureClass; 00576 typedef typename GTEST_BIND_(TestSel, Type) TestClass; 00577 00578 // First, registers the first type-parameterized test in the type 00579 // list. 00580 MakeAndRegisterTestInfo( 00581 (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + "/" 00582 + StreamableToString(index)).c_str(), 00583 GetPrefixUntilComma(test_names).c_str(), 00584 GetTypeName<Type>().c_str(), 00585 NULL, // No value parameter. 00586 GetTypeId<FixtureClass>(), 00587 TestClass::SetUpTestCase, 00588 TestClass::TearDownTestCase, 00589 new TestFactoryImpl<TestClass>); 00590 00591 // Next, recurses (at compile time) with the tail of the type list. 00592 return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail> 00593 ::Register(prefix, case_name, test_names, index + 1); 00594 } 00595 }; 00596 00597 // The base case for the compile time recursion. 00598 template <GTEST_TEMPLATE_ Fixture, class TestSel> 00599 class TypeParameterizedTest<Fixture, TestSel, Types0> { 00600 public: 00601 static bool Register(const char* /*prefix*/, const char* /*case_name*/, 00602 const char* /*test_names*/, int /*index*/) { 00603 return true; 00604 } 00605 }; 00606 00607 // TypeParameterizedTestCase<Fixture, Tests, Types>::Register() 00608 // registers *all combinations* of 'Tests' and 'Types' with Google 00609 // Test. The return value is insignificant - we just need to return 00610 // something such that we can call this function in a namespace scope. 00611 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types> 00612 class TypeParameterizedTestCase { 00613 public: 00614 static bool Register(const char* prefix, const char* case_name, 00615 const char* test_names) { 00616 typedef typename Tests::Head Head; 00617 00618 // First, register the first test in 'Test' for each type in 'Types'. 00619 TypeParameterizedTest<Fixture, Head, Types>::Register( 00620 prefix, case_name, test_names, 0); 00621 00622 // Next, recurses (at compile time) with the tail of the test list. 00623 return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types> 00624 ::Register(prefix, case_name, SkipComma(test_names)); 00625 } 00626 }; 00627 00628 // The base case for the compile time recursion. 00629 template <GTEST_TEMPLATE_ Fixture, typename Types> 00630 class TypeParameterizedTestCase<Fixture, Templates0, Types> { 00631 public: 00632 static bool Register(const char* /*prefix*/, const char* /*case_name*/, 00633 const char* /*test_names*/) { 00634 return true; 00635 } 00636 }; 00637 00638 #endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P 00639 00640 // Returns the current OS stack trace as an std::string. 00641 // 00642 // The maximum number of stack frames to be included is specified by 00643 // the gtest_stack_trace_depth flag. The skip_count parameter 00644 // specifies the number of top frames to be skipped, which doesn't 00645 // count against the number of frames to be included. 00646 // 00647 // For example, if Foo() calls Bar(), which in turn calls 00648 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in 00649 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't. 00650 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop( 00651 UnitTest* unit_test, int skip_count); 00652 00653 // Helpers for suppressing warnings on unreachable code or constant 00654 // condition. 00655 00656 // Always returns true. 00657 GTEST_API_ bool AlwaysTrue(); 00658 00659 // Always returns false. 00660 inline bool AlwaysFalse() { return !AlwaysTrue(); } 00661 00662 // Helper for suppressing false warning from Clang on a const char* 00663 // variable declared in a conditional expression always being NULL in 00664 // the else branch. 00665 struct GTEST_API_ ConstCharPtr { 00666 ConstCharPtr(const char* str) : value(str) {} 00667 operator bool() const { return true; } 00668 const char* value; 00669 }; 00670 00671 // A simple Linear Congruential Generator for generating random 00672 // numbers with a uniform distribution. Unlike rand() and srand(), it 00673 // doesn't use global state (and therefore can't interfere with user 00674 // code). Unlike rand_r(), it's portable. An LCG isn't very random, 00675 // but it's good enough for our purposes. 00676 class GTEST_API_ Random { 00677 public: 00678 static const UInt32 kMaxRange = 1u << 31; 00679 00680 explicit Random(UInt32 seed) : state_(seed) {} 00681 00682 void Reseed(UInt32 seed) { state_ = seed; } 00683 00684 // Generates a random number from [0, range). Crashes if 'range' is 00685 // 0 or greater than kMaxRange. 00686 UInt32 Generate(UInt32 range); 00687 00688 private: 00689 UInt32 state_; 00690 GTEST_DISALLOW_COPY_AND_ASSIGN_(Random); 00691 }; 00692 00693 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a 00694 // compiler error iff T1 and T2 are different types. 00695 template <typename T1, typename T2> 00696 struct CompileAssertTypesEqual; 00697 00698 template <typename T> 00699 struct CompileAssertTypesEqual<T, T> { 00700 }; 00701 00702 // Removes the reference from a type if it is a reference type, 00703 // otherwise leaves it unchanged. This is the same as 00704 // tr1::remove_reference, which is not widely available yet. 00705 template <typename T> 00706 struct RemoveReference { typedef T type; }; // NOLINT 00707 template <typename T> 00708 struct RemoveReference<T&> { typedef T type; }; // NOLINT 00709 00710 // A handy wrapper around RemoveReference that works when the argument 00711 // T depends on template parameters. 00712 #define GTEST_REMOVE_REFERENCE_(T) \ 00713 typename ::testing::internal::RemoveReference<T>::type 00714 00715 // Removes const from a type if it is a const type, otherwise leaves 00716 // it unchanged. This is the same as tr1::remove_const, which is not 00717 // widely available yet. 00718 template <typename T> 00719 struct RemoveConst { typedef T type; }; // NOLINT 00720 template <typename T> 00721 struct RemoveConst<const T> { typedef T type; }; // NOLINT 00722 00723 // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above 00724 // definition to fail to remove the const in 'const int[3]' and 'const 00725 // char[3][4]'. The following specialization works around the bug. 00726 template <typename T, size_t N> 00727 struct RemoveConst<const T[N]> { 00728 typedef typename RemoveConst<T>::type type[N]; 00729 }; 00730 00731 #if defined(_MSC_VER) && _MSC_VER < 1400 00732 // This is the only specialization that allows VC++ 7.1 to remove const in 00733 // 'const int[3] and 'const int[3][4]'. However, it causes trouble with GCC 00734 // and thus needs to be conditionally compiled. 00735 template <typename T, size_t N> 00736 struct RemoveConst<T[N]> { 00737 typedef typename RemoveConst<T>::type type[N]; 00738 }; 00739 #endif 00740 00741 // A handy wrapper around RemoveConst that works when the argument 00742 // T depends on template parameters. 00743 #define GTEST_REMOVE_CONST_(T) \ 00744 typename ::testing::internal::RemoveConst<T>::type 00745 00746 // Turns const U&, U&, const U, and U all into U. 00747 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \ 00748 GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T)) 00749 00750 // Adds reference to a type if it is not a reference type, 00751 // otherwise leaves it unchanged. This is the same as 00752 // tr1::add_reference, which is not widely available yet. 00753 template <typename T> 00754 struct AddReference { typedef T& type; }; // NOLINT 00755 template <typename T> 00756 struct AddReference<T&> { typedef T& type; }; // NOLINT 00757 00758 // A handy wrapper around AddReference that works when the argument T 00759 // depends on template parameters. 00760 #define GTEST_ADD_REFERENCE_(T) \ 00761 typename ::testing::internal::AddReference<T>::type 00762 00763 // Adds a reference to const on top of T as necessary. For example, 00764 // it transforms 00765 // 00766 // char ==> const char& 00767 // const char ==> const char& 00768 // char& ==> const char& 00769 // const char& ==> const char& 00770 // 00771 // The argument T must depend on some template parameters. 00772 #define GTEST_REFERENCE_TO_CONST_(T) \ 00773 GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T)) 00774 00775 // ImplicitlyConvertible<From, To>::value is a compile-time bool 00776 // constant that's true iff type From can be implicitly converted to 00777 // type To. 00778 template <typename From, typename To> 00779 class ImplicitlyConvertible { 00780 private: 00781 // We need the following helper functions only for their types. 00782 // They have no implementations. 00783 00784 // MakeFrom() is an expression whose type is From. We cannot simply 00785 // use From(), as the type From may not have a public default 00786 // constructor. 00787 static From MakeFrom(); 00788 00789 // These two functions are overloaded. Given an expression 00790 // Helper(x), the compiler will pick the first version if x can be 00791 // implicitly converted to type To; otherwise it will pick the 00792 // second version. 00793 // 00794 // The first version returns a value of size 1, and the second 00795 // version returns a value of size 2. Therefore, by checking the 00796 // size of Helper(x), which can be done at compile time, we can tell 00797 // which version of Helper() is used, and hence whether x can be 00798 // implicitly converted to type To. 00799 static char Helper(To); 00800 static char (&Helper(...))[2]; // NOLINT 00801 00802 // We have to put the 'public' section after the 'private' section, 00803 // or MSVC refuses to compile the code. 00804 public: 00805 // MSVC warns about implicitly converting from double to int for 00806 // possible loss of data, so we need to temporarily disable the 00807 // warning. 00808 #ifdef _MSC_VER 00809 # pragma warning(push) // Saves the current warning state. 00810 # pragma warning(disable:4244) // Temporarily disables warning 4244. 00811 00812 static const bool value = 00813 sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1; 00814 # pragma warning(pop) // Restores the warning state. 00815 #elif defined(__BORLANDC__) 00816 // C++Builder cannot use member overload resolution during template 00817 // instantiation. The simplest workaround is to use its C++0x type traits 00818 // functions (C++Builder 2009 and above only). 00819 static const bool value = __is_convertible(From, To); 00820 #else 00821 static const bool value = 00822 sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1; 00823 #endif // _MSV_VER 00824 }; 00825 template <typename From, typename To> 00826 const bool ImplicitlyConvertible<From, To>::value; 00827 00828 // IsAProtocolMessage<T>::value is a compile-time bool constant that's 00829 // true iff T is type ProtocolMessage, proto2::Message, or a subclass 00830 // of those. 00831 template <typename T> 00832 struct IsAProtocolMessage 00833 : public bool_constant< 00834 ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value || 00835 ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> { 00836 }; 00837 00838 // When the compiler sees expression IsContainerTest<C>(0), if C is an 00839 // STL-style container class, the first overload of IsContainerTest 00840 // will be viable (since both C::iterator* and C::const_iterator* are 00841 // valid types and NULL can be implicitly converted to them). It will 00842 // be picked over the second overload as 'int' is a perfect match for 00843 // the type of argument 0. If C::iterator or C::const_iterator is not 00844 // a valid type, the first overload is not viable, and the second 00845 // overload will be picked. Therefore, we can determine whether C is 00846 // a container class by checking the type of IsContainerTest<C>(0). 00847 // The value of the expression is insignificant. 00848 // 00849 // Note that we look for both C::iterator and C::const_iterator. The 00850 // reason is that C++ injects the name of a class as a member of the 00851 // class itself (e.g. you can refer to class iterator as either 00852 // 'iterator' or 'iterator::iterator'). If we look for C::iterator 00853 // only, for example, we would mistakenly think that a class named 00854 // iterator is an STL container. 00855 // 00856 // Also note that the simpler approach of overloading 00857 // IsContainerTest(typename C::const_iterator*) and 00858 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++. 00859 typedef int IsContainer; 00860 template <class C> 00861 IsContainer IsContainerTest(int /* dummy */, 00862 typename C::iterator* /* it */ = NULL, 00863 typename C::const_iterator* /* const_it */ = NULL) { 00864 return 0; 00865 } 00866 00867 typedef char IsNotContainer; 00868 template <class C> 00869 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; } 00870 00871 // EnableIf<condition>::type is void when 'Cond' is true, and 00872 // undefined when 'Cond' is false. To use SFINAE to make a function 00873 // overload only apply when a particular expression is true, add 00874 // "typename EnableIf<expression>::type* = 0" as the last parameter. 00875 template<bool> struct EnableIf; 00876 template<> struct EnableIf<true> { typedef void type; }; // NOLINT 00877 00878 // Utilities for native arrays. 00879 00880 // ArrayEq() compares two k-dimensional native arrays using the 00881 // elements' operator==, where k can be any integer >= 0. When k is 00882 // 0, ArrayEq() degenerates into comparing a single pair of values. 00883 00884 template <typename T, typename U> 00885 bool ArrayEq(const T* lhs, size_t size, const U* rhs); 00886 00887 // This generic version is used when k is 0. 00888 template <typename T, typename U> 00889 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; } 00890 00891 // This overload is used when k >= 1. 00892 template <typename T, typename U, size_t N> 00893 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) { 00894 return internal::ArrayEq(lhs, N, rhs); 00895 } 00896 00897 // This helper reduces code bloat. If we instead put its logic inside 00898 // the previous ArrayEq() function, arrays with different sizes would 00899 // lead to different copies of the template code. 00900 template <typename T, typename U> 00901 bool ArrayEq(const T* lhs, size_t size, const U* rhs) { 00902 for (size_t i = 0; i != size; i++) { 00903 if (!internal::ArrayEq(lhs[i], rhs[i])) 00904 return false; 00905 } 00906 return true; 00907 } 00908 00909 // Finds the first element in the iterator range [begin, end) that 00910 // equals elem. Element may be a native array type itself. 00911 template <typename Iter, typename Element> 00912 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) { 00913 for (Iter it = begin; it != end; ++it) { 00914 if (internal::ArrayEq(*it, elem)) 00915 return it; 00916 } 00917 return end; 00918 } 00919 00920 // CopyArray() copies a k-dimensional native array using the elements' 00921 // operator=, where k can be any integer >= 0. When k is 0, 00922 // CopyArray() degenerates into copying a single value. 00923 00924 template <typename T, typename U> 00925 void CopyArray(const T* from, size_t size, U* to); 00926 00927 // This generic version is used when k is 0. 00928 template <typename T, typename U> 00929 inline void CopyArray(const T& from, U* to) { *to = from; } 00930 00931 // This overload is used when k >= 1. 00932 template <typename T, typename U, size_t N> 00933 inline void CopyArray(const T(&from)[N], U(*to)[N]) { 00934 internal::CopyArray(from, N, *to); 00935 } 00936 00937 // This helper reduces code bloat. If we instead put its logic inside 00938 // the previous CopyArray() function, arrays with different sizes 00939 // would lead to different copies of the template code. 00940 template <typename T, typename U> 00941 void CopyArray(const T* from, size_t size, U* to) { 00942 for (size_t i = 0; i != size; i++) { 00943 internal::CopyArray(from[i], to + i); 00944 } 00945 } 00946 00947 // The relation between an NativeArray object (see below) and the 00948 // native array it represents. 00949 enum RelationToSource { 00950 kReference, // The NativeArray references the native array. 00951 kCopy // The NativeArray makes a copy of the native array and 00952 // owns the copy. 00953 }; 00954 00955 // Adapts a native array to a read-only STL-style container. Instead 00956 // of the complete STL container concept, this adaptor only implements 00957 // members useful for Google Mock's container matchers. New members 00958 // should be added as needed. To simplify the implementation, we only 00959 // support Element being a raw type (i.e. having no top-level const or 00960 // reference modifier). It's the client's responsibility to satisfy 00961 // this requirement. Element can be an array type itself (hence 00962 // multi-dimensional arrays are supported). 00963 template <typename Element> 00964 class NativeArray { 00965 public: 00966 // STL-style container typedefs. 00967 typedef Element value_type; 00968 typedef Element* iterator; 00969 typedef const Element* const_iterator; 00970 00971 // Constructs from a native array. 00972 NativeArray(const Element* array, size_t count, RelationToSource relation) { 00973 Init(array, count, relation); 00974 } 00975 00976 // Copy constructor. 00977 NativeArray(const NativeArray& rhs) { 00978 Init(rhs.array_, rhs.size_, rhs.relation_to_source_); 00979 } 00980 00981 ~NativeArray() { 00982 // Ensures that the user doesn't instantiate NativeArray with a 00983 // const or reference type. 00984 static_cast<void>(StaticAssertTypeEqHelper<Element, 00985 GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>()); 00986 if (relation_to_source_ == kCopy) 00987 delete[] array_; 00988 } 00989 00990 // STL-style container methods. 00991 size_t size() const { return size_; } 00992 const_iterator begin() const { return array_; } 00993 const_iterator end() const { return array_ + size_; } 00994 bool operator==(const NativeArray& rhs) const { 00995 return size() == rhs.size() && 00996 ArrayEq(begin(), size(), rhs.begin()); 00997 } 00998 00999 private: 01000 // Initializes this object; makes a copy of the input array if 01001 // 'relation' is kCopy. 01002 void Init(const Element* array, size_t a_size, RelationToSource relation) { 01003 if (relation == kReference) { 01004 array_ = array; 01005 } else { 01006 Element* const copy = new Element[a_size]; 01007 CopyArray(array, a_size, copy); 01008 array_ = copy; 01009 } 01010 size_ = a_size; 01011 relation_to_source_ = relation; 01012 } 01013 01014 const Element* array_; 01015 size_t size_; 01016 RelationToSource relation_to_source_; 01017 01018 GTEST_DISALLOW_ASSIGN_(NativeArray); 01019 }; 01020 01021 } // namespace internal 01022 } // namespace testing 01023 01024 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \ 01025 ::testing::internal::AssertHelper(result_type, file, line, message) \ 01026 = ::testing::Message() 01027 01028 #define GTEST_MESSAGE_(message, result_type) \ 01029 GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type) 01030 01031 #define GTEST_FATAL_FAILURE_(message) \ 01032 return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure) 01033 01034 #define GTEST_NONFATAL_FAILURE_(message) \ 01035 GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure) 01036 01037 #define GTEST_SUCCESS_(message) \ 01038 GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess) 01039 01040 // Suppresses MSVC warnings 4072 (unreachable code) for the code following 01041 // statement if it returns or throws (or doesn't return or throw in some 01042 // situations). 01043 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \ 01044 if (::testing::internal::AlwaysTrue()) { statement; } 01045 01046 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \ 01047 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ 01048 if (::testing::internal::ConstCharPtr gtest_msg = "") { \ 01049 bool gtest_caught_expected = false; \ 01050 try { \ 01051 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ 01052 } \ 01053 catch (expected_exception const&) { \ 01054 gtest_caught_expected = true; \ 01055 } \ 01056 catch (...) { \ 01057 gtest_msg.value = \ 01058 "Expected: " #statement " throws an exception of type " \ 01059 #expected_exception ".\n Actual: it throws a different type."; \ 01060 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ 01061 } \ 01062 if (!gtest_caught_expected) { \ 01063 gtest_msg.value = \ 01064 "Expected: " #statement " throws an exception of type " \ 01065 #expected_exception ".\n Actual: it throws nothing."; \ 01066 goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ 01067 } \ 01068 } else \ 01069 GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \ 01070 fail(gtest_msg.value) 01071 01072 #define GTEST_TEST_NO_THROW_(statement, fail) \ 01073 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ 01074 if (::testing::internal::AlwaysTrue()) { \ 01075 try { \ 01076 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ 01077 } \ 01078 catch (...) { \ 01079 goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \ 01080 } \ 01081 } else \ 01082 GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \ 01083 fail("Expected: " #statement " doesn't throw an exception.\n" \ 01084 " Actual: it throws.") 01085 01086 #define GTEST_TEST_ANY_THROW_(statement, fail) \ 01087 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ 01088 if (::testing::internal::AlwaysTrue()) { \ 01089 bool gtest_caught_any = false; \ 01090 try { \ 01091 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ 01092 } \ 01093 catch (...) { \ 01094 gtest_caught_any = true; \ 01095 } \ 01096 if (!gtest_caught_any) { \ 01097 goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \ 01098 } \ 01099 } else \ 01100 GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \ 01101 fail("Expected: " #statement " throws an exception.\n" \ 01102 " Actual: it doesn't.") 01103 01104 01105 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be 01106 // either a boolean expression or an AssertionResult. text is a textual 01107 // represenation of expression as it was passed into the EXPECT_TRUE. 01108 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \ 01109 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ 01110 if (const ::testing::AssertionResult gtest_ar_ = \ 01111 ::testing::AssertionResult(expression)) \ 01112 ; \ 01113 else \ 01114 fail(::testing::internal::GetBoolAssertionFailureMessage(\ 01115 gtest_ar_, text, #actual, #expected).c_str()) 01116 01117 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \ 01118 GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ 01119 if (::testing::internal::AlwaysTrue()) { \ 01120 ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \ 01121 GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ 01122 if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \ 01123 goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \ 01124 } \ 01125 } else \ 01126 GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \ 01127 fail("Expected: " #statement " doesn't generate new fatal " \ 01128 "failures in the current thread.\n" \ 01129 " Actual: it does.") 01130 01131 // Expands to the name of the class that implements the given test. 01132 #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \ 01133 test_case_name##_##test_name##_Test 01134 01135 // Helper macro for defining tests. 01136 #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\ 01137 class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\ 01138 public:\ 01139 GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\ 01140 private:\ 01141 virtual void TestBody();\ 01142 static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\ 01143 GTEST_DISALLOW_COPY_AND_ASSIGN_(\ 01144 GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\ 01145 };\ 01146 \ 01147 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\ 01148 ::test_info_ =\ 01149 ::testing::internal::MakeAndRegisterTestInfo(\ 01150 #test_case_name, #test_name, NULL, NULL, \ 01151 (parent_id), \ 01152 parent_class::SetUpTestCase, \ 01153 parent_class::TearDownTestCase, \ 01154 new ::testing::internal::TestFactoryImpl<\ 01155 GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\ 01156 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody() 01157 01158 #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_