Qucs-core
0.0.19
|
00001 /* 00002 * rlcg.cpp - lossy RLCG transmission line class implementation 00003 * 00004 * Copyright (C) 2009 Stefan Jahn <stefan@lkcc.org> 00005 * 00006 * This is free software; you can redistribute it and/or modify 00007 * it under the terms of the GNU General Public License as published by 00008 * the Free Software Foundation; either version 2, or (at your option) 00009 * any later version. 00010 * 00011 * This software is distributed in the hope that it will be useful, 00012 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00013 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00014 * GNU General Public License for more details. 00015 * 00016 * You should have received a copy of the GNU General Public License 00017 * along with this package; see the file COPYING. If not, write to 00018 * the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, 00019 * Boston, MA 02110-1301, USA. 00020 * 00021 * $Id$ 00022 * 00023 */ 00024 00025 #if HAVE_CONFIG_H 00026 # include <config.h> 00027 #endif 00028 00029 #include "component.h" 00030 #include "rlcg.h" 00031 00032 using namespace qucs; 00033 00034 rlcg::rlcg () : circuit (2) { 00035 type = CIR_RLCG; 00036 } 00037 00038 // Calculates propagation constant and characteristic complex impedance. 00039 void rlcg::calcPropagation (nr_double_t frequency) { 00040 nr_double_t R = getPropertyDouble ("R"); 00041 nr_double_t L = getPropertyDouble ("L"); 00042 nr_double_t C = getPropertyDouble ("C"); 00043 nr_double_t G = getPropertyDouble ("G"); 00044 nr_complex_t Z = nr_complex_t (R, 2 * pi * frequency * L); 00045 nr_complex_t Y = nr_complex_t (G, 2 * pi * frequency * C); 00046 g = std::sqrt (Z * Y); 00047 z = std::sqrt (Z / Y); 00048 } 00049 00050 void rlcg::calcSP (nr_double_t frequency) { 00051 nr_double_t l = getPropertyDouble ("Length"); 00052 calcPropagation (frequency); 00053 nr_complex_t r = (z - z0) / (z + z0); 00054 nr_complex_t p = std::exp (-l * g); 00055 nr_complex_t s11 = r * (1.0 - p * p) / (1.0 - p * p * r * r); 00056 nr_complex_t s21 = p * (1.0 - r * r) / (1.0 - p * p * r * r); 00057 setS (NODE_1, NODE_1, s11); setS (NODE_2, NODE_2, s11); 00058 setS (NODE_1, NODE_2, s21); setS (NODE_2, NODE_1, s21); 00059 } 00060 00061 void rlcg::saveCharacteristics (nr_double_t) { 00062 setCharacteristic ("Zl", real (z)); 00063 } 00064 00065 void rlcg::calcNoiseSP (nr_double_t) { 00066 nr_double_t l = getPropertyDouble ("Length"); 00067 if (l == 0.0) return; 00068 // calculate noise using Bosma's theorem 00069 nr_double_t T = getPropertyDouble ("Temp"); 00070 matrix s = getMatrixS (); 00071 matrix e = eye (getSize ()); 00072 setMatrixN (celsius2kelvin (T) / T0 * (e - s * transpose (conj (s)))); 00073 } 00074 00075 void rlcg::calcNoiseAC (nr_double_t) { 00076 nr_double_t l = getPropertyDouble ("Length"); 00077 if (l == 0.0) return; 00078 // calculate noise using Bosma's theorem 00079 nr_double_t T = getPropertyDouble ("Temp"); 00080 setMatrixN (4 * celsius2kelvin (T) / T0 * real (getMatrixY ())); 00081 } 00082 00083 void rlcg::initDC (void) { 00084 nr_double_t R = getPropertyDouble ("R"); 00085 nr_double_t l = getPropertyDouble ("Length"); 00086 if (R != 0.0 && l != 0.0) { 00087 // a tiny resistance 00088 nr_double_t g = 1.0 / R / l; 00089 setVoltageSources (0); 00090 allocMatrixMNA (); 00091 setY (NODE_1, NODE_1, +g); setY (NODE_2, NODE_2, +g); 00092 setY (NODE_1, NODE_2, -g); setY (NODE_2, NODE_1, -g); 00093 } 00094 else { 00095 // a DC short 00096 setVoltageSources (1); 00097 setInternalVoltageSource (1); 00098 allocMatrixMNA (); 00099 voltageSource (VSRC_1, NODE_1, NODE_2); 00100 } 00101 } 00102 00103 void rlcg::initAC (void) { 00104 nr_double_t l = getPropertyDouble ("L"); 00105 if (l != 0.0) { 00106 setVoltageSources (0); 00107 allocMatrixMNA (); 00108 } else { 00109 setVoltageSources (1); 00110 allocMatrixMNA (); 00111 voltageSource (VSRC_1, NODE_1, NODE_2); 00112 } 00113 } 00114 00115 void rlcg::calcAC (nr_double_t frequency) { 00116 nr_double_t l = getPropertyDouble ("Length"); 00117 if (l != 0.0) { 00118 calcPropagation (frequency); 00119 nr_complex_t y11 = +1.0 / z / tanh (g * l); 00120 nr_complex_t y21 = -1.0 / z / sinh (g * l); 00121 setY (NODE_1, NODE_1, y11); setY (NODE_2, NODE_2, y11); 00122 setY (NODE_1, NODE_2, y21); setY (NODE_2, NODE_1, y21); 00123 } 00124 } 00125 00126 void rlcg::initTR (void) { 00127 initDC (); 00128 } 00129 00130 // properties 00131 PROP_REQ [] = { 00132 { "R", PROP_REAL, { 0.0, PROP_NO_STR }, PROP_POS_RANGE }, 00133 { "L", PROP_REAL, { 0.6e-6, PROP_NO_STR }, PROP_POS_RANGEX }, 00134 { "C", PROP_REAL, { 240e-12, PROP_NO_STR }, PROP_POS_RANGEX }, 00135 { "G", PROP_REAL, { 0.0, PROP_NO_STR }, PROP_POS_RANGE }, 00136 { "Length", PROP_REAL, { 1e-3, PROP_NO_STR }, PROP_NO_RANGE }, 00137 PROP_NO_PROP }; 00138 PROP_OPT [] = { 00139 { "Temp", PROP_REAL, { 26.85, PROP_NO_STR }, PROP_MIN_VAL (K) }, 00140 PROP_NO_PROP }; 00141 struct define_t rlcg::cirdef = 00142 { "RLCG", 2, PROP_COMPONENT, PROP_NO_SUBSTRATE, PROP_LINEAR, PROP_DEF };