Qucs-core  0.0.19
tline4p.cpp
Go to the documentation of this file.
00001 /*
00002  * tline4p.cpp - ideal 4-terminal transmission line class implementation
00003  *
00004  * Copyright (C) 2007, 2008 Stefan Jahn <stefan@lkcc.org>
00005  *
00006  * This is free software; you can redistribute it and/or modify
00007  * it under the terms of the GNU General Public License as published by
00008  * the Free Software Foundation; either version 2, or (at your option)
00009  * any later version.
00010  *
00011  * This software is distributed in the hope that it will be useful,
00012  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00013  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00014  * GNU General Public License for more details.
00015  *
00016  * You should have received a copy of the GNU General Public License
00017  * along with this package; see the file COPYING.  If not, write to
00018  * the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
00019  * Boston, MA 02110-1301, USA.
00020  *
00021  * $Id$
00022  *
00023  */
00024 
00025 #if HAVE_CONFIG_H
00026 # include <config.h>
00027 #endif
00028 
00029 #include "component.h"
00030 #include "tline4p.h"
00031 
00032 using namespace qucs;
00033 
00034 tline4p::tline4p () : circuit (4) {
00035   type = CIR_TLINE4P;
00036 }
00037 
00038 void tline4p::calcSP (nr_double_t frequency) {
00039   nr_double_t l = getPropertyDouble ("L");
00040   nr_double_t z = getPropertyDouble ("Z");
00041   nr_double_t a = getPropertyDouble ("Alpha");
00042   nr_double_t b = 2 * pi * frequency / C0;
00043   a = std::log (a) / 2;
00044 
00045   nr_complex_t g = nr_complex_t (a, b);
00046   nr_double_t p = 2 * z0 + z;
00047   nr_double_t n = 2 * z0 - z;
00048   nr_complex_t e = std::exp (2.0 * g * l);
00049   nr_complex_t d = p * p * e - n * n;
00050 
00051   nr_complex_t s11 = z * (p * e + n) / d;
00052   nr_complex_t s14 = 1.0 - s11;
00053   nr_complex_t s12 = 4.0 * z * z0 * std::exp (g * l) / d;
00054 
00055   setS (NODE_1, NODE_1, +s11); setS (NODE_2, NODE_2, +s11);
00056   setS (NODE_3, NODE_3, +s11); setS (NODE_4, NODE_4, +s11);
00057   setS (NODE_1, NODE_4, +s14); setS (NODE_4, NODE_1, +s14);
00058   setS (NODE_2, NODE_3, +s14); setS (NODE_3, NODE_2, +s14);
00059   setS (NODE_1, NODE_2, +s12); setS (NODE_2, NODE_1, +s12);
00060   setS (NODE_3, NODE_4, +s12); setS (NODE_4, NODE_3, +s12);
00061   setS (NODE_1, NODE_3, -s12); setS (NODE_3, NODE_1, -s12);
00062   setS (NODE_2, NODE_4, -s12); setS (NODE_4, NODE_2, -s12);
00063 }
00064 
00065 void tline4p::calcNoiseSP (nr_double_t) {
00066   nr_double_t l = getPropertyDouble ("L");
00067   if (l < 0) return;
00068   // calculate noise using Bosma's theorem
00069   nr_double_t T = getPropertyDouble ("Temp");
00070   matrix s = getMatrixS ();
00071   matrix e = eye (getSize ());
00072   setMatrixN (celsius2kelvin (T) / T0 * (e - s * transpose (conj (s))));
00073 }
00074 
00075 void tline4p::calcNoiseAC (nr_double_t) {
00076   nr_double_t l = getPropertyDouble ("L");
00077   if (l < 0) return;
00078   // calculate noise using Bosma's theorem
00079   nr_double_t T = getPropertyDouble ("Temp");
00080   setMatrixN (4 * celsius2kelvin (T) / T0 * real (getMatrixY ()));
00081 }
00082 
00083 void tline4p::initDC (void) {
00084   setVoltageSources (2);
00085   allocMatrixMNA ();
00086   voltageSource (VSRC_1, NODE_1, NODE_2);
00087   voltageSource (VSRC_2, NODE_3, NODE_4);
00088 }
00089 
00090 void tline4p::initAC (void) {
00091   nr_double_t l = getPropertyDouble ("L");
00092   if (l != 0.0) {
00093     setVoltageSources (0);
00094     allocMatrixMNA ();
00095   } else {
00096     setVoltageSources (2);
00097     allocMatrixMNA ();
00098     voltageSource (VSRC_1, NODE_1, NODE_2);
00099     voltageSource (VSRC_2, NODE_3, NODE_4);
00100   }
00101 }
00102 
00103 void tline4p::calcAC (nr_double_t frequency) {
00104   nr_double_t l = getPropertyDouble ("L");
00105   nr_double_t z = getPropertyDouble ("Z");
00106   nr_double_t a = getPropertyDouble ("Alpha");
00107   nr_double_t b = 2 * pi * frequency / C0;
00108   a = std::log (a) / 2;
00109   if (l != 0.0) {
00110     nr_complex_t g = nr_complex_t (a, b);
00111     nr_complex_t y11 = coth (g * l) / z;
00112     nr_complex_t y21 = -cosech (g * l) / z;
00113     setY (NODE_1, NODE_1, +y11); setY (NODE_2, NODE_2, +y11);
00114     setY (NODE_3, NODE_3, +y11); setY (NODE_4, NODE_4, +y11);
00115     setY (NODE_1, NODE_4, -y11); setY (NODE_4, NODE_1, -y11);
00116     setY (NODE_2, NODE_3, -y11); setY (NODE_3, NODE_2, -y11);
00117     setY (NODE_1, NODE_2, +y21); setY (NODE_2, NODE_1, +y21);
00118     setY (NODE_3, NODE_4, +y21); setY (NODE_4, NODE_3, +y21);
00119     setY (NODE_1, NODE_3, -y21); setY (NODE_3, NODE_1, -y21);
00120     setY (NODE_2, NODE_4, -y21); setY (NODE_4, NODE_2, -y21);
00121   }
00122 }
00123 
00124 void tline4p::initTR (void) {
00125   nr_double_t l = getPropertyDouble ("L");
00126   nr_double_t z = getPropertyDouble ("Z");
00127   deleteHistory ();
00128   if (l > 0.0) {
00129     setVoltageSources (2);
00130     allocMatrixMNA ();
00131     setHistory (true);
00132     initHistory (l / C0);
00133     setB (NODE_1, VSRC_1, +1); setB (NODE_2, VSRC_2, +1);
00134     setB (NODE_4, VSRC_1, -1); setB (NODE_3, VSRC_2, -1);
00135     setC (VSRC_1, NODE_1, +1); setC (VSRC_2, NODE_2, +1);
00136     setC (VSRC_1, NODE_4, -1); setC (VSRC_2, NODE_3, -1);
00137     setD (VSRC_1, VSRC_1, -z); setD (VSRC_2, VSRC_2, -z);
00138   } else {
00139     setVoltageSources (2);
00140     allocMatrixMNA ();
00141     voltageSource (VSRC_1, NODE_1, NODE_2);
00142     voltageSource (VSRC_2, NODE_3, NODE_4);
00143   }
00144 }
00145 
00146 void tline4p::calcTR (nr_double_t t) {
00147   nr_double_t l = getPropertyDouble ("L");
00148   nr_double_t a = getPropertyDouble ("Alpha");
00149   nr_double_t z = getPropertyDouble ("Z");
00150   nr_double_t T = l / C0;
00151   a = std::log (a) / 2;
00152   if (T > 0.0) {
00153     T = t - T;
00154     a = std::exp (-a / 2 * l);
00155     setE (VSRC_1, a * (getV (NODE_2, T) - getV (NODE_3, T) +
00156                        z * getJ (VSRC_2, T)));
00157     setE (VSRC_2, a * (getV (NODE_1, T) - getV (NODE_4, T) +
00158                        z * getJ (VSRC_1, T)));
00159   }
00160 }
00161 
00162 // properties
00163 PROP_REQ [] = {
00164   { "Z", PROP_REAL, { 50, PROP_NO_STR }, PROP_POS_RANGE },
00165   { "L", PROP_REAL, { 1e-3, PROP_NO_STR }, PROP_NO_RANGE },
00166   PROP_NO_PROP };
00167 PROP_OPT [] = {
00168   { "Alpha", PROP_REAL, { 1, PROP_NO_STR }, PROP_POS_RANGEX },
00169   { "Temp", PROP_REAL, { 26.85, PROP_NO_STR }, PROP_MIN_VAL (K) },
00170   PROP_NO_PROP };
00171 struct define_t tline4p::cirdef =
00172   { "TLIN4P", 4, PROP_COMPONENT, PROP_NO_SUBSTRATE, PROP_LINEAR, PROP_DEF };