Qucs-core  0.0.19
triac.cpp
Go to the documentation of this file.
00001 /*
00002  * triac.cpp - triac class implementation
00003  *
00004  * Copyright (C) 2008 Stefan Jahn <stefan@lkcc.org>
00005  * Copyright (C) 2008 Michael Margraf <Michael.Margraf@alumni.TU-Berlin.DE>
00006  *
00007  * This is free software; you can redistribute it and/or modify
00008  * it under the terms of the GNU General Public License as published by
00009  * the Free Software Foundation; either version 2, or (at your option)
00010  * any later version.
00011  *
00012  * This software is distributed in the hope that it will be useful,
00013  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015  * GNU General Public License for more details.
00016  *
00017  * You should have received a copy of the GNU General Public License
00018  * along with this package; see the file COPYING.  If not, write to
00019  * the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
00020  * Boston, MA 02110-1301, USA.
00021  *
00022  * $Id$
00023  *
00024  */
00025 
00026 #if HAVE_CONFIG_H
00027 # include <config.h>
00028 #endif
00029 
00030 #include "component.h"
00031 #include "device.h"
00032 #include "devstates.h"
00033 #include "triac.h"
00034 
00035 #define NODE_A1 0 /* anode 1 */
00036 #define NODE_A2 1 /* anode 2 (cathode) */
00037 #define NODE_GA 2 /* gate */
00038 #define NODE_IN 3 /* internal node */
00039 
00040 using namespace qucs;
00041 using namespace qucs::device;
00042 
00043 // Constructor for the triac.
00044 triac::triac () : circuit (4) {
00045   type = CIR_TRIAC;
00046 }
00047 
00048 // Callback for initializing the DC analysis.
00049 void triac::initDC (void) {
00050   Ud_last = 0.0;
00051   // allocate MNA matrices
00052   allocMatrixMNA ();
00053   // create internal node
00054   setInternalNode (NODE_IN, "int");
00055 }
00056 
00057 // Callback for DC analysis.
00058 void triac::calcDC (void) {
00059   calcTheModel (false);
00060 }
00061 
00062 void triac::calcTheModel (bool last) {
00063   // get device properties
00064   nr_double_t Ubo = getPropertyDouble ("Vbo");
00065   nr_double_t Ibo = getPropertyDouble ("Igt");
00066   nr_double_t Is  = getPropertyDouble ("Is");
00067   nr_double_t N   = getPropertyDouble ("N");
00068   nr_double_t Gg  = 1.0 / getPropertyDouble ("Rg");
00069   nr_double_t T   = getPropertyDouble ("Temp");
00070   gi = 1.0 / getPropertyDouble ("Ri");
00071 
00072   nr_double_t Ut, Ud_bo, Ieq, Vd;
00073 
00074   Ut = N * celsius2kelvin (T) * kBoverQ;
00075   Ud_bo = std::log (Ibo / Is + 1.0);
00076 
00077   Vd = Ud = real (getV (NODE_IN) - getV (NODE_A2));
00078   Id = sign (Ud) * Is;
00079   Ud = fabs (Ud) / Ut;
00080 
00081   bool isOn;
00082   if (last)
00083     isOn = (Ud_last / Ut) > Ud_bo;
00084   else
00085     isOn = Ud > Ud_bo;
00086 
00087   if (Ud >= 80.0) {
00088     Id *= std::exp (80.0) * (1.0 + Ud - 80.0) - 1.0;
00089     Ud  = 80.0;
00090   }
00091   else
00092     Id *= std::exp (Ud) - 1.0;
00093 
00094   gd  = Is / Ut * std::exp (Ud);
00095   Ieq = Id - Vd * gd;
00096 
00097   // fill in I-Vector
00098   setI (NODE_A2, +Ieq);
00099   setI (NODE_IN, -Ieq);
00100   setI (NODE_A1, +0.0);
00101   setI (NODE_GA, +0.0);
00102 
00103   if (!isOn) {
00104     Ut = Ubo / std::log (Ibo / Is);
00105     Vd = Ud = real (getV (NODE_A1) - getV (NODE_IN));
00106     Id = sign (Ud) * Is;
00107     Ud = fabs (Ud) / Ut;
00108 
00109     if (Ud >= 80.0) {
00110       Id *= std::exp (80.0) * (1.0 + Ud - 80.0) - 1.0;
00111       Ud  = 80.0;
00112     }
00113     else
00114       Id *= std::exp (Ud) - 1.0;
00115 
00116     gi  = Is / Ut * std::exp (Ud);
00117     Ieq = Id - Vd * gi;
00118     addI (NODE_A1, -Ieq);
00119     addI (NODE_IN, +Ieq);
00120   }
00121 
00122   // fill in G-Matrix
00123   setY (NODE_A2, NODE_A2, +gd); setY (NODE_IN, NODE_IN, +gd);
00124   setY (NODE_A2, NODE_IN, -gd); setY (NODE_IN, NODE_A2, -gd);
00125   setY (NODE_A1, NODE_A1, +gi); addY (NODE_IN, NODE_IN, +gi);
00126   setY (NODE_A1, NODE_IN, -gi); setY (NODE_IN, NODE_A1, -gi);
00127   setY (NODE_GA, NODE_GA, +Gg); addY (NODE_IN, NODE_IN, +Gg);
00128   setY (NODE_GA, NODE_IN, -Gg); setY (NODE_IN, NODE_GA, -Gg);
00129 }
00130 
00131 // Saves operating points (voltages).
00132 void triac::saveOperatingPoints (void) {
00133   nr_double_t Vd = real (getV (NODE_IN) - getV (NODE_A2));
00134   nr_double_t Vi = real (getV (NODE_A1) - getV (NODE_IN));
00135   setOperatingPoint ("Vd", Vd);
00136   setOperatingPoint ("Vi", Vi);
00137 }
00138 
00139 // Loads operating points (voltages).
00140 void triac::loadOperatingPoints (void) {
00141   Ud = getOperatingPoint ("Vd");
00142   Ui = getOperatingPoint ("Vi");
00143 }
00144 
00145 // Calculates and saves operating points.
00146 void triac::calcOperatingPoints (void) {
00147   nr_double_t Cj0 = getPropertyDouble ("Cj0");
00148   // calculate capacitances and charges
00149   nr_double_t Ci;
00150   Ci = Cj0;
00151   Qi = Cj0 * Ui;
00152   // save operating points
00153   setOperatingPoint ("gi", gi);
00154   setOperatingPoint ("gd", gd);
00155   setOperatingPoint ("Id", Id);
00156   setOperatingPoint ("Ci", Ci);
00157 }
00158 
00159 // Callback for initializing the AC analysis.
00160 void triac::initAC (void) {
00161   initDC ();
00162 }
00163 
00164 // Build admittance matrix for AC and SP analysis.
00165 matrix triac::calcMatrixY (nr_double_t frequency) {
00166   nr_double_t gd = getOperatingPoint ("gd");
00167   nr_double_t gi = getOperatingPoint ("gi");
00168   nr_double_t gg = 1.0 / getPropertyDouble ("Rg");
00169   nr_double_t Ci = getOperatingPoint ("Ci");
00170   nr_complex_t yi = nr_complex_t (gi, Ci * 2.0 * pi * frequency);
00171   matrix y (4);
00172   y.set (NODE_A2, NODE_A2, +gd);
00173   y.set (NODE_IN, NODE_IN, +gd +yi +gg);
00174   y.set (NODE_A2, NODE_IN, -gd);
00175   y.set (NODE_IN, NODE_A2, -gd);
00176   y.set (NODE_A1, NODE_A1, +yi);
00177   y.set (NODE_A1, NODE_IN, -yi);
00178   y.set (NODE_IN, NODE_A1, -yi);
00179   y.set (NODE_GA, NODE_GA, +gg);
00180   y.set (NODE_GA, NODE_IN, -gg);
00181   y.set (NODE_IN, NODE_GA, -gg);
00182   return y;
00183 }
00184 
00185 // Callback for the AC analysis.
00186 void triac::calcAC (nr_double_t frequency) {
00187   setMatrixY (calcMatrixY (frequency));
00188 }
00189 
00190 // Callback for S-parameter analysis.
00191 void triac::calcSP (nr_double_t frequency) {
00192   setMatrixS (ytos (calcMatrixY (frequency)));
00193 }
00194 
00195 #define qState 0 // charge state
00196 #define cState 1 // current state
00197 
00198 // Callback for initializing the TR analysis.
00199 void triac::initTR (void) {
00200   setStates (2);
00201   initDC ();
00202   time_prev = -1.0;
00203 }
00204 
00205 // Callback for the TR analysis.
00206 void triac::calcTR (nr_double_t time) {
00207   if (time_prev < time) {
00208     time_prev = time;
00209     Ud_last = fabs (real (getV (NODE_IN) - getV (NODE_A2)));
00210   }
00211   calcTheModel (true);
00212 
00213   saveOperatingPoints ();
00214   loadOperatingPoints ();
00215   calcOperatingPoints ();
00216 
00217   nr_double_t Ci = getOperatingPoint ("Ci");
00218   transientCapacitance (qState, NODE_A1, NODE_IN, Ci, Ui, Qi);
00219 }
00220 
00221 // properties
00222 PROP_REQ [] = {
00223   { "Igt", PROP_REAL, { 50e-6, PROP_NO_STR }, PROP_POS_RANGEX },
00224   { "Vbo", PROP_REAL, { 30, PROP_NO_STR }, PROP_POS_RANGEX },
00225   PROP_NO_PROP };
00226 PROP_OPT [] = {
00227   { "Cj0", PROP_REAL, { 10e-12, PROP_NO_STR }, PROP_POS_RANGE },
00228   { "Is", PROP_REAL, { 1e-10, PROP_NO_STR }, PROP_POS_RANGE },
00229   { "N", PROP_REAL, { 2.0, PROP_NO_STR }, PROP_RNGII (0.1, 100) },
00230   { "Ri", PROP_REAL, { 10.0, PROP_NO_STR }, PROP_POS_RANGEX },
00231   { "Rg", PROP_REAL, { 5.0, PROP_NO_STR }, PROP_POS_RANGEX },
00232   { "Temp", PROP_REAL, { 26.85, PROP_NO_STR }, PROP_MIN_VAL (K) },
00233   PROP_NO_PROP };
00234 struct define_t triac::cirdef =
00235   { "Triac", 3, PROP_COMPONENT, PROP_NO_SUBSTRATE, PROP_NONLINEAR, PROP_DEF };